

GAMSPy: Algebraic

Modeling in Python

What is GAMS?...

• GAMS is a specialized, high performance, algebraic

modeling language (AML)

• Active development since 1987

• Backward compatibility is foundational to our mission

http://www.gams.com/

Build abstract models

• Declared/defined over sets

• Like “writing on paper”

• Compact

• Logically consistent

– no domain violations

– no uncontrolled sets

• Completely abstract (no data)

What is GAMS?

http://www.gams.com/

Model Instance

• Add all the data… fast!

• Model instance generated at solve

GAMS Philosophy – tight syntax leads

to better modeling

What is GAMS?

http://www.gams.com/

Algebraic Modeling Language (AML)

Backward Compatibility – stable!

Active development since 1987 – stable!

Familiar syntax – human readable!

GAMS data structures – fast! large models!

The GAMS System – The Good

http://www.gams.com/

Not a general programming language

Lacks modern look/feel to syntax

Learning curve issues, users want familiar
syntax/reuse knowledge

Not easily deployable (~2GB install)

Integration into pipelines could be smoother

Relational data based (not general like list,
dict, etc.)

The GAMS System – The Could Be Better

http://www.gams.com/

What is GAMSPy?...

• Python-based Algebraic Modeling Language (AML)

• Abstract/data-independent modeling

• Convenient handling of sparse data

• Streamlined optimization pipeline management

• Convenient and efficient data structures (Numpy, Pandas)

• Runs with a specialized engine (GAMS)

http://www.gams.com/

What is GAMSPy?...

• More Python-ic dev cycle

• FutureWarning, release notes, DeprecationWarning, removal

• Currently in beta - 1.0 released in the next 4 months

• Documentation: gamspy.readthedocs.io

• Model library (100+ models):
gamspy.readthedocs.io/en/latest/user/model_library.html

http://www.gams.com/

Build abstract models

• Declared/defined over sets

• Like “writing on paper”

• Compact

• Logically consistent

– no domain violations

– no uncontrolled sets

• Completely abstract (no data)

• Leverages operator overloading

What is GAMSPy?

http://www.gams.com/

Build abstract models

• Declared/defined over sets

• Like “writing on paper”

• Compact

• Logically consistent

– no domain violations

– no uncontrolled sets

• Completely abstract (no data)

• Leverages operator overloading

What is GAMSPy?

http://www.gams.com/

Build abstract models

• Declared/defined over sets

• Like “writing on paper”

• Compact

• Logically consistent

– no domain violations

– no uncontrolled sets

• Completely abstract (no data)

• Leverages operator overloading

What is GAMSPy?

http://www.gams.com/

Generates Early Warnings

• Domain violations

• Cannot create equation block

• Raises helpful error messages

GAMS Philosophy – tight syntax leads

to better modeling

Next… Getting Started!

What is GAMSPy?

http://www.gams.com/

… add symbols to a Container

… symbols get linked together
(holding references)

… Models are separate objects and

do not live in a Container

… Models are solved, not

Containers

GAMSPy Design Philosophy

http://www.gams.com/

… symbols hold records (as pandas
DataFrames)

… symbol records are added with
setRecords method

… many data types are accepted!

… setRecords will standardize the
data

… can also pass data at symbol
construction

GAMSPy Design Philosophy

http://www.gams.com/

… symbols hold records (as pandas
DataFrames)

… symbol records are added with
setRecords method

… many data types are accepted!

… setRecords will standardize the
data

… can also pass data at symbol
construction

GAMSPy Design Philosophy

http://www.gams.com/

… algebra is added with familiar

syntax (operator overloading)

… algebra is passed to GAMS

subsystem and executed immediately

… results are available in Python

GAMSPy Design Philosophy

http://www.gams.com/

… native python data types are OK

First Example – Prepare Data

http://www.gams.com/

… can use a mix of programming
styles to set records(constructor,

setRecords)

… validate (and debug) data with
<symbol>.isValid() or

<container>.isValid()

… verbose=True will output helpful

error messages

First Example – Fill the Container

http://www.gams.com/

… remember GAMSPy checks for

logical inconsistencies in algebra
(domain violations, uncontrolled sets)

First Example – Define Algebra

http://www.gams.com/

… objective function algebra can be
passed in Model constructor (same

with Equations)

… <model>.solve() returns a

DataFrame with results/status

… Model object holds a lot of

metainformation about the model!

First Example – Define Model and Solve

http://www.gams.com/

• GAMS syntax relies on conditional
statements for assignment
(Sets, Parameters,

Equations)

• GAMSPy supports

– Numerical expressions

– Numerical relations

– Bitwise operations

– Set membership

– Mixed statements

– Nested conditions

• Works on LHS or RHS

Next Level Syntax -- .where

https://gamspy.readthedocs.io/en/latest/user/advanced/assignments.html#conditional-assignments
https://gamspy.readthedocs.io/en/latest/user/advanced/assignments.html
http://www.gams.com/

• Ord and Card

– Useful with set to get

positional/size information

• Lag and Lead

– Relates set members (next or

previous)

– Linear or circular types

Other Advanced Syntax

https://gamspy.readthedocs.io/en/latest/user/advanced/card_ord.html
https://gamspy.readthedocs.io/en/latest/user/advanced/lag_lead.html
http://www.gams.com/

• Ord and Card

– Useful with set to get

positional/size information

• Lag and Lead

– Relates set members (next or

previous)

– Linear or circular types

Other Advanced Syntax

https://gamspy.readthedocs.io/en/latest/user/advanced/card_ord.html
https://gamspy.readthedocs.io/en/latest/user/advanced/lag_lead.html
http://www.gams.com/

• Ord and Card

– Useful with set to get

positional/size information

• Lag and Lead

– Relates set members (next or

previous)

– Linear or circular types

Other Advanced Syntax

https://gamspy.readthedocs.io/en/latest/user/advanced/card_ord.html
https://gamspy.readthedocs.io/en/latest/user/advanced/lag_lead.html
http://www.gams.com/

• Ord and Card

– Useful with set to get

positional/size information

• Lag and Lead

– Relates set members (next or

previous)

– Linear or circular types

Other Advanced Syntax

https://gamspy.readthedocs.io/en/latest/user/advanced/card_ord.html
https://gamspy.readthedocs.io/en/latest/user/advanced/lag_lead.html
http://www.gams.com/

A Real Example…

• Uncertain data of corn production (county/state level)

• Confident of national level data

• Need balanced data
– ∑counties = states

– ∑states = nation

• Minimize weighted square error

http://www.gams.com/

Single Environment Pipelines

Read data

Type data

Clean data

http://www.gams.com/

Single Environment Pipelines

Start

Building

Model

Pass in

data

Reshape

data as

necessary

http://www.gams.com/

Single Environment Pipelines

Define

algebra

Create

Model

Initialize

as

necessary

http://www.gams.com/

Single Environment Pipelines

Solve model

Create

reports

Get post-

solve data

Create reports

w/GAMSPy syntax

Report exists as

DataFrame!

http://www.gams.com/

GAMSPy on cloud with GAMS Engine

Deployment Solution

■ Solves GAMS models on

centralized resources

(on-prem or cloud)

■ REST API

(user & job management)

■ GAMS job scheduling &

Load balancing

3 2 1
Gateway
REST API

Summary

• Generates mathematical models (not instances) – pure representation of
mathematical symbols, devoid of specific data

• GAMSPy leverages a GAMS backend to execute assignment operations,
generate and solve models

• Access a broad set of state-of-the-art optimization solvers

• Unique and streamlined way to completely tasks like pre/post-processing and
visualization – all in a single environment

• GAMSPy works seamlessly with GAMS MIRO, GAMS Engine, and NEOS (local
machines vs. cloud/AWS machines)

• GAMSPy is fully installable with one line – pip install gamspy

https://www.gams.com/miro/
https://www.gams.com/engine/
https://neos-server.org/neos/
https://pypi.org/project/gamspy/
http://www.gams.com/

Contact us with your project ideas!

consulting@gams.com

support@gams.com

sales@gams.com

mailto:consulting@gams.com
mailto:support@gams.com
mailto:sales@gams.com
http://www.gams.com/

	Folie 1
	Folie 2: GAMSPy: Algebraic Modeling in Python
	Folie 3: What is GAMS?...
	Folie 4: What is GAMS?
	Folie 5: What is GAMS?
	Folie 6: The GAMS System – The Good
	Folie 7: The GAMS System – The Could Be Better
	Folie 8: What is GAMSPy?...
	Folie 9: What is GAMSPy?...
	Folie 10: What is GAMSPy?
	Folie 11: What is GAMSPy?
	Folie 12: What is GAMSPy?
	Folie 13: What is GAMSPy?
	Folie 14: GAMSPy Design Philosophy
	Folie 15: GAMSPy Design Philosophy
	Folie 16: GAMSPy Design Philosophy
	Folie 17: GAMSPy Design Philosophy
	Folie 18: First Example – Prepare Data
	Folie 19: First Example – Fill the Container
	Folie 20: First Example – Define Algebra
	Folie 21: First Example – Define Model and Solve
	Folie 22: Next Level Syntax -- .where
	Folie 23: Other Advanced Syntax
	Folie 24: Other Advanced Syntax
	Folie 25: Other Advanced Syntax
	Folie 26: Other Advanced Syntax
	Folie 27: A Real Example…
	Folie 28: Single Environment Pipelines
	Folie 29: Single Environment Pipelines
	Folie 30: Single Environment Pipelines
	Folie 31: Single Environment Pipelines
	Folie 32: GAMSPy on cloud with GAMS Engine
	Folie 33: Summary
	Folie 34

